
Stephen Checkoway

Programming Abstractions
Lecture 18: MiniScheme A and B

Structure of MiniScheme
Environment

env.rkt

‣ Contains the environment data type with constructor  
(env list-of-symbols list-of-values previous-env)

‣ Contains other procedures to recognize and access the symbols, values, and
previous environment

‣ Your task is to implement (env-lookup environment symbol)

Structure of MiniScheme
Parser

parse.rkt

‣ Contains data types for let expressions, lambda expressions, if-then-else
expressions, procedure-application expressions and so on

‣ Builds a parse tree out of these data types from an expression 

> (parse '(let ([f (lambda (x) (+ x 1))]) (f 5)))  
(let-exp '(f) (list (lam-exp '(x) ...)) (app-exp ...))

‣ You get to implement all of this, bit by bit

Structure of MiniScheme
Interpreter

interp.rkt

‣ Contains data types for closures and primitive procedures (i.e., built-in
procedures)

‣ Takes an expression tree and an environment and returns a value  

> (eval-exp exp-tree environment)

‣ You get to implement all of this, bit by bit, at the same time you're
implementing the parser

What, exactly, is the input to parse?

Scheme (and thus Racket) has a procedure (read) that reads input and returns
a structured list or an atom

The interpreter project flow

1. read returns a structured list which is passed to parse as the input
parameter

2. parse produces a parse tree containing nodes like lit-exp, let-exp, and
app-exp which is passed, along with init-env to eval-exp

3. eval-exp takes a parse tree and an environment and evaluates the
expression, returning the result

Interpreter flow

(read)

MiniScheme
expression as a
string

(parse)

Structured list

(eval-exp)

Expression tree

Environment

Value

Do a demo with (let ([x 100] [z 25]) (+ (- x 10) z))

Programs are just structured lists
Parsing

Consider the program  

(let ([x 10]  
 [y 20])  
 (+ x y))

This is just a structured list containing the symbols let, f, x, y, and + and the
numbers 10 and 20

Your first task is going to be to build some new data types to represent
programs by parsing these structured lists

A full grammar for Minischeme

EXP → number

| symbol

| (if EXP EXP EXP)

| (let (LET-BINDINGS) EXP)

| (letrec (LET-BINDINGS) EXP)

| (lambda (PARAMS) EXP)

| (set! symbol EXP)

| (begin EXP*)

| (EXP+)

LET-BINDINGS → LET-BINDING*

LET-BINDING → [symbol EXP]

PARAMS → symbol*

Start simple: only numbers

EXP → number	 	 parse into lit-exp

We're going to need a data type to represent literal expression (and the only
type of literals we have are numbers)

We're going to want something like 

(struct lit-exp (num) #:transparent)

which gives 

(lit-exp num) ; constructor  
(lit-exp? exp) ; recognizer  
(lit-exp-num exp) ; accessor

Parsing numbers
Our first parser: MiniScheme A

(define (parse input)  
 (cond [(number? input) (lit-exp input)]  
 [else (error 'parse "Invalid syntax ~s" input)]))

This and the definition of the lit-exp data type belong in parse.rkt

You don't need to implement it exactly the way I do

That said, when I run (parse 52), I get 

(lit-exp 52)

Provide the definitions
(provide proc1 proc2 data1 data2 ...)

We want parse.rkt to be just one module in our program so make sure to
provide the procedures

‣ (provide parse)

‣ Also the procedures for creating and manipulating the lit-exp

What does (parse 15) return (assuming the implementation we've
discussed so far)?

A. 15

B. (number 15)

C. (lit-exp 15)

D. (lit-exp "15")

E. It's an error of some sort

12

Evaluating literals (interp.rkt)
Our first interpreter: MiniScheme A

We'll need to require env.rkt and parse.rkt to get access to those
modules' procedures

The main procedure in interp.rkt is eval-exp

(define (eval-exp tree e)  
 (cond [(lit-exp? tree) (lit-exp-num tree)]  
 [else (error 'eval-exp "Invalid tree: ~s" tree)]))

Extracts the number

from the lit-exp

What does (eval-exp 15 empty-env) return (assuming the
implementation we've discussed so far)?

A. 15

B. (value 15)

C. (lit-exp 15)

D. It's an error of some sort

14

What does (eval-exp (lit-exp 15) empty-env) return (assuming
the implementation we've discussed so far)?

A. 15

B. (value 15)

C. (lit-exp 15)

D. It's an error of some sort

15

Putting them together

> (parse 107)  
(lit-exp 107)

> (lit-exp 107)  
(lit-exp 107)

> (eval-exp (lit-exp 107) empty-env)  
107

> (eval-exp (parse 107) empty-env)  
107

Read-eval-print loop

Having to call parse and then eval-exp over and over is a hassle

It'd be better if we could run a read-eval-print loop that would read in an
expression from the user, parse it, and evaluate it in an environment

minischeme.rkt will do this but you must (provide …)

‣ in parse.rkt

- A (parse input) procedure

‣ in interp.rkt

- An (eval-exp tree environment) procedure

- An initial environment init-env  

Something like  

(define init-env (env '(x y) '(23 42) empty-env))

minischeme.rkt

(read)

MiniScheme
expression as a
string

(parse)

Structured list

(eval-exp)

Expression tree

Environment

Value

minischeme.rkt

Running the read-eval-print loop

Open minischeme.rkt in DrRacket, click Run

Enter expressions in the box (only numbers are supported right now)

Enter exit to exit MiniScheme

Homeworks 6 and 7

Multiple steps, each adding parts to the
MiniScheme interpreter

For each new type of expression

‣ Add a new data type

- ite-exp

- let-exp

- etc.

‣ Modify parse to produce those

‣ Modify eval-exp to interpret them

EXP → number

| symbol

| (if EXP EXP EXP)

| (let (LET-BINDINGS) EXP)

| (letrec (LET-BINDINGS) EXP)
| (lambda (PARAMS) EXP)

| (set! symbol EXP)

| (begin EXP*)

| (EXP EXP*)

LET-BINDINGS → LET-BINDING*

LET-BINDING → [symbol EXP]

PARAMS → symbol*

Interpreter flow

(read)

MiniScheme
expression as a
string

(parse)

Structured list

(eval-exp)

Expression tree

Environment

Value

Let's add some variables!
MiniScheme B

Grammar 
EXP → number	 	 parse into lit-exp  

 | symbol	 	 parse into var-exp

Data type for a variable reference expression

(struct var-exp (symbol) #:transparent)

‣ (var-exp symbol)

‣ (var-exp? exp)

‣ (var-exp-symbol exp)

Parsing symbols
MiniScheme B

(define (parse input)  
 (cond [(number? input) (lit-exp input)]  
 [(symbol? input) (var-exp input)] 
 [else (error 'parse "Invalid syntax ~s" input)]))

When I run (parse 'foo), I get 
(var-exp 'foo)

Interpreting symbols
MiniScheme B

(define (eval-exp tree e)  
 (cond [(lit-exp? tree) (lit-exp-num tree)]  
 [(var-exp? tree)  
 (env-lookup e (var-exp-symbol tree))]  
 [else (error 'eval-exp "Invalid tree: ~s" tree)]))

You'll need a working env-lookup

> (env-lookup init-env 'x)  
23  
> (eval-exp (var-exp 'x) init-env)  
23

Assuming that x is bound to 10 and y to 25 in init-env, what does 

(parse 'x) return (assuming the implementation discussed so far)?

A. 10

B. (lit-exp 10)

C. (var-exp 10)

D. (var-exp 'x)

E. It's an error of some sort

25

Assuming that x is bound to 10 and y to 25 in init-env, what does 

(eval-exp (parse 'x) init-env) return (assuming the
implementation discussed so far)?

A. 10

B. (lit-exp 10)

C. (var-exp 10)

D. (var-exp 'x)

E. It's an error of some sort

26

